A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

نویسندگان

  • Mark Pfeiffer
  • Giuseppe Paolo
  • Hannes Sommer
  • Juan I. Nieto
  • Roland Siegwart
  • Cesar Cadena
چکیده

This paper reports on a data-driven, interactionaware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling local behavior for predicting social interactions towards human tracking

Human interaction dynamics are known to play an important role in the development of robust pedestrian trackers that are needed for a variety of applications in video surveillance. Traditional approaches to pedestrian tracking assume that each pedestrian walks independently and the tracker predicts the location based on an underlying motion model, such as a constant velocity or autoregressive m...

متن کامل

Predicting Social Interactions for Visual Tracking

Human interaction dynamics are known to play an important role in the development of robust pedestrian trackers that are applicable to a variety of applications in video surveillance. Traditional approaches to pedestrian tracking assume that each pedestrian walks independently and the tracker predicts the location based on an underlying motion model, such as a constant velocity or autoregressiv...

متن کامل

A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle

In this paper we describe a fully integrated system for detecting, localizing, and tracking pedestrians from a moving vehicle. The system can reliably detect upright pedestrians to a range of 40 m in lightly cluttered urban environments. The system uses range data from stereo vision to segment the scene into regions of interest, from which shape features are extracted and used to classify pedes...

متن کامل

Learning to Play with Intrinsically-Motivated Self-Aware Agents

Infants are experts at playing, with an amazing ability to generate novel structured behaviors in unstructured environments that lack clear extrinsic reward signals. We seek to mathematically formalize these abilities using a neural network that implements curiosity-driven intrinsic motivation. Using a simple but ecologically naturalistic simulated environment in which an agent can move and int...

متن کامل

Hierarchical Attentive Recurrent Tracking

Class-agnostic object tracking is particularly difficult in cluttered environments as target specific discriminative models cannot be learned a priori. Inspired by how the human visual cortex employs spatial attention and separate “where” and “what” processing pathways to actively suppress irrelevant visual features, this work develops a hierarchical attentive recurrent model for single object ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.08528  شماره 

صفحات  -

تاریخ انتشار 2017